
Batch Modernization:
Batch Improvements in z/OS 1.13

Speaker Name: Bob Rogers
Presentation created by: Gary Puchkoff
Speaker Company: IBM Corporation

Date of Presentation: March 2, 2011
Session Number: 8924

Agenda

• Why is batch important?

• z/OS batch – part of the OS fabric

• IBM’s Batch Modernization effort

• New features

• Improvements

• By eliminating human reaction time, batch can process in one
hour what OLTP would take one month (or require 50,000 people)

• Batch is part of a continuous spectrum of workload

• Enterprise clients run a continual mix of online and
batch – response to global, 24 x 7 business

• Business events as a trigger for batch e.g. end-
of-day are a hallmark of a critical workload

Interactive ComputingBatch / Bulk Processing

Served well by modern languages &
frameworks – Java, WebKit

Served well by legacy languages &
technology – COBOL, JCL, JES

Significant part of University curriculaCeased to be a significant element of
University curricula

ManualAutomated

Single transaction processed per
intervention

Many items of data processed per human
intervention

Optimized for efficiency of humanOptimized for machine utilization

Interface designed for humanInterface designed for machine

What is batch computing?

Batch processing system for processing data with little or no operator intervention. This allows efficient use of the computer
and is well suited to applications of a repetitive nature, such as file format conversion, payroll, or the production of utility bills.

In interactive computing, by contrast, data and instructions are entered while the processing program is running.
Hutchinson Encyclopedia

HPC

Source: “Consider Scheduling Tools for Batch Application Integration”, Gartner.

Why Batch?

• Economies of Scale

• Processing all items in a collection

• Pre-fetch optimizations

• Period based processing

• End of day, month, year

• Consistent reporting

• Integration with others on a consistent basis

z/OS 45 years of Batch –
From punch cards to Java Batch

• WLM, WLM Batch initiators
• Batch & Print Subsystem JES2, JES3, PSF
• Job Control Language (JCL)
• Batch Management Interfaces (for example.

SDSF)
• Step and Job dependencies by means of

Condition Codes and Job Networks
• Online and Batch in parallel
• Time-driven Job execution
• Job / Step Restart functions, Start, Submit,

Remote submit, Syntax Scanner
• Accounting based on Job/USER, Job statistics

and RMF reports
• Pre-loaded address spaces (initiators)
• All Mainframe programming languages can be

used in Batch

45 years of evolution in Batch processing on the
IBM Mainframe have provided the foundation for
heavy-duty, reliable and efficient Batch for most
large companies in the world:

z/OS Batch – Integral part of the OS

• OS based batch submission
• Always there

• Scheduled

• Secure

• Resource Accounting

• OS based resource management
• Dataset synchronization via enqueues

• CPU, memory, I/O

• OS based device management
• Disk, Tapes

IBM Batch Modernization initiative

• Ensure that IT architects and the industry recognize

• Almost all large scale IT projects include batch

• The web focus of the last decade has focused on online work,
response time, transactions

• Backend processing is often best implemented as batch

• Provide an IBM Batch solution for any platform

• Including z/OS

• Websphere Compute Grid
• Both java programming model and execution environment

• CICS Compute Grid on z/OS
• Maintain leadership in z/OS batch

• Improvements to existing function

• Integrate and support the Compute grid programming model

WebSphere XD Compute Grid

• Java Batch combined with all functionality provided by the WebSphere
JEE Container

• Extension on top of WebSphere Application Server
• Available as a feature pack on WAS V7 (limited function), or a

product, WebSphere XD Compute Grid (full function)

• Java stand-alone functionality plus
• WAS Container management

• security, transactions and connection management

• Check pointing
• Persistent JVM
• QoS, such as high availability

• Reuse of OLTP code in WAS XD Compute Grid Batch Container

Job
Scheduler

Batch
Container

Workload
Connector

Parallel
Job

Manager

W
o

rk
lo

a
d

 S
c
h

e
d

u
le

r
(e

.g
. T

W
S

)

Batch
Container

Batch
Container

P
e
r L

in
e
 o

f B
u
s
in

e
s
s

Jobs Jobs

Jobs

Jobs

Jobs

Jobs

Job
Job

Job

Jobs

Jobs

Jobs

Jobs Console

Jobs

Online
Applications

public submit(Job j) {
_sched.submit(j);

}A
P

Is

Compute Grid Overview diagram

Jobs are written in XJCL, an XML
version of a job control language.

Compute grid provides
parallel job management

WebSphere XD Compute Grid
programming environment

As with all WebSphere work, it is run transactionally and uses architected connectors to get to the resources

Benefits of Java (Batch) on z/OS

• Specific Java Batch APIs for z/OS
• Dataset and VSAM access
• Condition Code passing
• DFSORT support
• Writing Logstreams
• Triggering of Jobs from Java
• RACF APIs

• Local DB2 Database driver for high throughput
• Access to many Java skills
• Effective and efficient development tools available

• Rational Tools available specific to Batch Container

• Availability of many classes, libraries, frameworks and applications based on
open source

• Interoperability with other programming languages on z/OS

z/OS Batch Runtime Environment

• A new option for running batch work in z/OS 1.13

• Provides a managed environment for integration of Java
and COBOL

• Consistent with IBM Websphere based batch
• A subset of the Websphere programming model

• Incorporated in the OS

• DB2 resource manager

Batch Execution Runtime Environment
Java COBOL with DB2 Interoperability

• Ability to replace/add functions in current 3GL DB2 (e.g.
COBOL DB2) application inventory with new Java DB2 code
� Requires local attach z/OS DB2 connection sharing for

common DB2 access
� Requires UOW (Transactional) integrity among the

application components

• A generalized solution without requiring a specific run-time or
middleware, i.e. a pure batch environment

• Implementation requires little or no changes to existing code!
• Only requires special callbacks for commit/rollback

Our z/OS Topology
JES Single Step based

JES Initiator

Submit
JCL

JZOS JVM zOS BC

Transaction
Service

Policy/logs

z/OS Batch
Container

Execution
Service

JDBC

Local DB2

JAVA/Cobol App
//STEP EXEC PROC=BCDBATCH

//MAINPROG DD *

PGMNAME
//PARMS DD *

TYPE=JAVA | COBOL
PARM = ‘Parm String ‘
ARG1=
ARG2=
…

ARGN=
/*

Commit
Rollback

z/OS Pluginz/OS Plugin

Process
Job Step

JCL is familiar to operations
code in the batch container is the same as the code one could write anywhere

Instream data in PROCs
and INCLUDEs (JES2 only)

• Instream data in procs and includes (JES2)

//PROC1 PROC

//ASTEP EXEC PGM=xyz

//DD1 DD *

This is instream data

// PEND

• Prior to this support you could not have instream data in a JCL procedure

• Support also allows instream data in include statements wherever a DD
statement is allowed

• Requires both z/OS 1.13 and JES2 1.13 on the converting system and the
initiating system

• This is not supported for MSTR subsystems

• This is not supported by JES3

Instream data in PROCs
and INCLUDEs (JES2 only)

Instream data in PROC example
//HELLO PROC

//STEP1 EXEC ASMHCLG

//C.SYSIN DD *

TEST CSECT ,

STM 14,12,12(13)

BALR 12,0

USING *,12

ST 13,SAVAREA+4

LA 13,SAVAREA

SPACE 1

WTO 'Hello world!'

SPACE 1

L 13,SAVAREA+4

LM 14,12,12(13)

SR 15,15

BR 14

SPACE 1

SAVAREA DC 18F'0'

END

//L.TEST DD DUMMY

//L.SYSXX DD *

// PEND

JOB return code (JES2 only)

• There is no formal definition of the job return code. The defacto
standard is JES2 returning the maximum return code of the job.

• New job card keyword to control job return code

• JOBRC= MAXRC | LASTRC | (STEP,name.name)
• MAXRC is existing processing (default)
• LASTRC is return code of last step
• (STEP,name.name) is return code of identified step

• If step not executed, defaults to MAXRC

• JOBCLASS JOBRC= MAXRC|LASTRC to affect processing for all
jobs in the job class

• Affects return code seen in
• Extended status (eg SDSF)

• ENF 70

• HASP165 message

• $DJ,CC= command

Suspend a job at next step (JES2 only)

• If a job is restartable

• A new operator command is defined to suspend the
job at the next step

• The job is requeued for execution

• Allows a faster and/or less disruptive shutdown

• The job must complete the step it is running.
• This remains an issue for long running steps

Suspend a job at next step (JES2 only)

• Remove job on step boundary
• New STEP operand on $EJ command

• Causes job to exit execution at end of current step
• Optional HOLD operand makes job held
• Job is requeued for execution

• Job must be journaling (JOURNAL=YES on JOBCLASS)

• Uses existing continue restart function of z/OS
• Previously used to restart jobs after an IPL

• Full syntax $EJxxx,STEP [,HOLD]
• Full cross member support

Spin Any (JES 2 only)

• Ability to specify automatic spin options in JCL
• Eliminates the requirement to take down a long running process to

release spool space

• Similar to what was done for JESLOG

• Applies to any data set allocated as SPIN
• No application code/JCL change needed

• Provides a time, size, or command based option to spin output

• Update to SPIN= parameter on DD statement
SPIN= { NO }

{ (UNALLOC,'hh:mm') } Spin at specific time
{ (UNALLOC,'+hh:mm') } Spin every hh:mm interval
{ (UNALLOC,nnn [K|M]) } Spin every nnn lines

{ (UNALLOC,NOCMND) } Cannot be spun by command

{ (UNALLOC,CMNDONLY) } Can be spun via operator command

• $TJn,SPIN,DDNAME=name command added

Freeing Tape Volumes before end of step

• A new FREEVOL=EOV keyword on the JCL DD
statement:

• This is intended to allow overlapped processing for
multivolume data sets, which can reduce batch
processing elapsed time.

• Specifies that a tape that is a part of a multivolume
data set become available at end-of-volume rather
than at step end.

• Allows other jobs to use the tape immediately.
• Allows overlapped processing of multivolume tape

data sets.

IEBCOPY

• IEBCOPY utility partitioned data set (PDS) to
another PDS performance improvements

• IEBCOPY is planned to exploit 31-bit storage for
track buffers

• The requirement for APF authorization is planned
to be removed

Options for improved Batch Elapsed time

• Hardware

• CPU
• Faster
• More

• I/O
• zHPF
• SSD drives

• Memory
• Large pages, More

• Software

• Parallel
• I/O, setup, execution

• Optimize
• Use less resource, exploit new algorithms

References

• Redbook – Batch Modernization for z/OS – SG24-7779

http://www.redbooks.ibm.com/redbooks/pdfs/sg247779.pdf

• Redpaper – Batch Processing with Websphere Compute
Grid: Delivering Business Value to the Enterprise
http://www.redbooks.ibm.com/redpapers/pdfs/redp4566.pdf

• Java Batch Programming with XD Compute Grid
http://www.ibm.com/developerworks/websphere/techjournal/0801_vignola/0801_vignola.html

Question

• Where would you like to see us focus on batch
modernization?

• Please send e-mail to Gary Puchkoff
(puchkoff@us.ibm.com)

